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Joint modelling: what is it?

• Subjects i = 1, ..., m.

• Longitudinal measurements Yij at times tij.

• Times-to-event Si (possibly censored).

• Baseline covariates xi.

• Parameters θ.

[Y, S|x, θ]



AIDS data

• Data from RCT of three different drug regimes
for HIV+ patients.

1 = zidovudine, 600mg

2 =didanosine, 500mg

3 = didanosine, 750mg

Total n = 913 subjects.

• S = time of progression to AIDS or death

Y = time-sequence of CD4 measurements
(weeks 0, 2, 6, 12, 18, 24)

• S > 24 for most subjects (long-term follow-up)

• 334 observed event-times, 579 censored



Schizophrenia data

• Data from placebo-controlled RCT of drug treatments
for schizophrenia:

– Placebo

– Haloperidol (standard)

– Risperidone (novel)

Total n = 517 subjects.

• Y = PANSS measurement (weeks -1, 0, 1, 2, 4, 6, 8)

• S = dropout time

• High dropout rates:

week −1 0 1 2 4 6 8
missing 0 3 9 70 122 205 251

proportion 0.00 0.01 0.02 0.14 0.24 0.40 0.49

• Dropout rate also treatment-dependent (P > H > R)



Heart surgery data

• RCT to compare two types of artificial heart-valve

– homograft

– stentless

• Y = time-sequence of left-ventricular-mass-index (LVMI)

• S = time of death

Is a patient’s longitudinal LVMI profile predictive of their survival
prognosis?



Joint modelling: why do it?

To analyse survival time S, whilst exploiting correlation with
an imperfectly measured, time-varying risk-factor Y

Example: AIDS data

• interest is in time to progression/death

• but long latency period implies heavy censoring

• hence, joint modelling improves inferences about
marginal distribution [S]



To analyse a longitudinal outcome measure Y with
potentially informative dropout at time S

Example: Schizophrenia data

• interest is reducing mean PANSS score

• but informative dropout process would imply that
modelling only [Y ] may be misleading



Because the relationship between Y and S is of intrinsic interest

Example: heart surgery data

• long-term build-up of left-ventricular muscle mass
may increase hazard for fatal heart-attack

• hence, interested in modelling relationship between
survival and subject-level LVMI

Scientific goal affects choice of statistical model/method?



Modelling longitudinal measurements

The Gaussian linear model

• (Yij, tij) : j = 1, ..., ni; i = 1, ..., m µij = E[Yij]

• Yi = (Yi1, ..., Yini
) Y = (Y1, ..., Ym)

• ti = (ti1, ..., tini
) t = (t1, ..., tm)

Y ∼ MVN{Xβ, V (φ)})

V (φ) =
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Modelling longitudinal measurements

Specifying the covariance structure

Yij = µij + Ui + Wi(tij) + Zij

Corresponds to within-subject variance matrices

Vi = ν2J + σ2R(ti) + τ2I

where R(ti) has elements Rjk = ρ(|tij − tik|).



Modelling longitudinal measurements

The variogram

V (u) =
1

2
Var{Y (t) − Y (t − u)}

• useful data-analytic tool for irregularly spaced,
incomplete data

• theoretical form for model on previous slide

V (u) = τ 2 + σ2{1 − ρ(u)}



Modelling survival outcomes

Fundamental tool is the hazard function,

h(s) = f(s)/{1 − F (s)}



Modelling strategies

• Proportional hazards

hi(s) = h0(s)θi θi = exp(x′
iβ)

• Accelerated life

Fi(s) = F0(θis) θi = exp(x′
iβ)

• Frailty

hi(s) = h0(s)θiUi θi = exp(x′
iβ) Ui ∼ G(u)



Modelling strategies (continued)

• Parametric

S ∼ f(s; θ) θi = exp(x′
iβ)

– S ∼ Gamma(λ, κ) : proportional hazards (κ known)

– log S ∼ N(µ, σ2) : accelerated life

– S ∼ Weibull(λ, δ) : proportional hazards and accelerated life



Joint modelling

Considerations to inform choice of approach

• focus on questions of primary scientific interest

• interpretability of model parameters

• statistical efficiency

• diagnostic checks for assumptions about effects
of primary interest

• robustness to departures from assumptions about effects
not of primary interest

• ease of implementation

• reduction to standard methods when there is no association



Joint modelling

Transformation models

(log S, Y ) ∼ MVN(µ, Σ)

• µ = (µS, µY )

• Σ =









σ2 γ′

γ V (φ)









• subjects provide independent replicates of (log S, Y )



Transformation models: the likelihood function

Standard result:

• log S|Y ∼ N(µS|Y , σ2
S|Y )

• µS|Y = µS + γ′V (φ)−1(Y − µY )

• σ2
S|Y = σ2 − γ′V (φ)−1γ

Likelihood contribution from ith subject:

• uncensored Si:

[Yi] × [log Si|Yi] (multivariate Gaussian pdf)

• censored Si:

[Yi]×{1−Φ((log Si −µS|Yi
)/σS|Y )} (pdf times tail probability)



Joint modelling

Random effects models
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Formulation of random effects models

Latent stochastic process

Bivariate Gaussian process R(t) = {R1(t), R2(t)}

• Rk(t) = Dk(t)Uk + Wk(t)

• {W1(t), W2(t)}: bivariate stationary Gaussian process

• (U1, U2): multivariate Gaussian random effects

Bivariate process R(t) is realised independently between subjects



Measurement sub-model

Yij = µi(tij) + R1i(tij) + Zij

• Zij ∼ N(0, τ 2)

• µi(tij) = X1i(tij)β1

Hazard sub-model

hi(t) = h0(t)F{X2(t)β2 + R2i(t)}

• h0(t) = non-parametric baseline hazard

• η2(t) = X2i(t) + R2i(t) = linear predictor for hazard

• typical choice F(·) = exp(·)



Random effects models: the likelihood function

• conditional independence: S ⊥ Y |R
• standard Gaussian marginal: [Y ]],L1(θ; Y )

• Gaussian conditional: [R|Y ]

• standard conditional: [S|R], L2(θ; S|R)

• selection factorisation

[Y, S] =
∫

[Y, S, R]dR

=
∫

[Y ][R|Y ][S|R, Y ]dR

= [Y ]
∫

[R|Y ][S|R]dR

L(θ; Y, S) = L1(θ; Y ) × ER|Y [L2(θ; S|R)]



Evaluating the likelihood function

L(θ; Y, S) = L1(θ; Y ) × ER|Y [L2(θ; S|R)]

• R is infinite-dimensional, but

• non-parametric specification of h0(·) implies we
only need R at event-times

• Monte Carlo evaluation of expectation term

• explicit EM evaluation possible in useful special cases
(eg Wulfsohn and Tsiatis, 1997)



Examples

• AIDS data (transformation model)

• Schizophrenia data (random effects model)

• Heart surgery data (random effects model?)



AIDS data
Mean square-root CD4
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Covariance structure

• Variance matrix of OLS residuals from saturated
treatments-by-times model

17.94 18.26 18.53 18.80 18.47 18.01

18.26 22.86 21.02 21.32 20.94 20.57

18.53 21.02 23.95 22.47 22.02 21.76

18.80 21.32 22.47 25.01 22.60 22.54

18.47 20.94 22.02 22.60 24.67 22.20

18.01 20.57 21.76 22.54 22.20 24.64



• Variogram tells similar story: dominant source of variation
is between subjects
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AIDS data

Baseline CD4 and time to progression/death
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Model formulation

• exchangeable covariance structure for Y

• non-parametric specification of Cov(log S, Y )

• mean
√

CD4 quadratic in time within each treatment group

• linear covariate adjustments



Maximum likelihood estimation

• Treatment contrasts:

θ2−1, θ3−1 : contrasts in mean log S

θ∗
2−1, θ∗

3−1 : contrasts in mean Y at 24 weeks

Scale parameter estimate std. error correlation
log S θ2−1 0.351 0.129

θ3−1 0.222 0.126 0.486

Y θ∗
2−1 0.981 0.439

θ∗
3−1 1.003 0.362 0.423



• Covariance structure

Var(Y ) = τ 2I + ν2J

Var(log S) = σ2

Corr(log S, Yj) = ρj

Parameter estimate std. error
τ 2 2.432 0.057
ν2 16.723 0.808
σ2 1.653 0.145
ρ1 0.428 0.038
ρ2 0.468 0.035
ρ3 0.467 0.035
ρ4 0.457 0.036
ρ5 0.520 0.035
ρ6 0.509 0.038



Goodness-of-fit

• Focus on conditional distribution of log S given Y

• Gaussian P-P and Q-Q plots with multiple imputation
of censored log S
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Schizophrenia data
Mean response
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Empirical and fitted variograms
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from random intercept and slope model.



Mean response by dropout cohort
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Model formulation

Measurement sub-model

For subject in treatment group k,

µi(t) = β0k + β1kt + β2kt
2

Yij = µi(tij) + R1i(tij) + Zij

Hazard sub-model

For subject in treatment group k,

hi(t) = h0(t) exp{αk + R2i(t)}



Latent process

Two choices for measurement process component

R1(t) = U1 + W1(t)

R1(t) = U1 + U2t

And for hazard process component

R2(t) = γ1R1(t)

R2(t) = γ1(U1 + U2t) + γ2U2



Heart surgery data

Mean log-LVMI response profiles

0 1 2 3 4 5 6

4.
6

4.
8

5.
0

5.
2

5.
4

Mean profile (band = 3 months)

Time from operation (/years)

lo
g(

LV
M

I)

overall

0 1 2 3 4 5 6
4.

6
4.

8
5.

0
5.

2
5.

4
Time from operation (/years)

lo
g(

LV
M

I)

Homograft valve

0 1 2 3 4 5 6

4.
6

4.
8

5.
0

5.
2

5.
4

Time from operation (/years)

lo
g(

LV
M

I)

Stentless valve

PSfrag replacements

θ
α
β

Y

S

R1

R2

Time (weeks)
√

CD4

t (days)

S(t)

t (weeks)

PANSS
Time (weeks)

Mean PANSS

u
V (u)

Time (weeks)

Mean PANSS



Heart surgery data
Survival curves adjusted for baseline covariates
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Heart surgery data

Hypothesis

• subjects who regress after surgery (increasing LVMI) are
at greater risk of heart attack

Exploratory analysis

• overall mean log(LVMI) decreases initially after surgery,
then remains approximately constant

• but some patients regress (increasing LVMI)

• time-averaged log(LVMI) is associated with increased hazard



Random effects joint model for heart surgery data

Yij =















µ(tij) + Ai + Wi(tij) + Zj : t ≤ τ
µ(tij) + (Ai + {Bi(t − τ )} + Wi(tij) + Zj : t > τ

hi(t) = h0(t) exp(x′
iβ + Bi)

• surgery has immediate beneficial effect on all patients

• patient outcomes diverge after time τ post-surgery

• hazard for survival depends on slope of LVMI after time τ



Conclusions

• Choice of model/method should relate to scientific purpose.

• Simple models/methods are useful when exploring a range
of modelling options, for example to select from amongst
potential covariates.

• Complex models/methods are useful when seeking to understand
subject-level stochastic variation.

• Flat likelihoods are common: different models may fit
the data almost equally well.

• We need an R library.
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